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Mobile Landscapes: using location data from cell phones
for urban analysis
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Abstract. The technology for determining the geographic location of cell phones and other handheld
devices is becoming increasingly available. It is opening the way to a wide range of applications,
collectively referred to as location-based services (LBS), that are primarily aimed at individual users.
However, if deployed to retrieve aggregated data in cities, LBS could become a powerful tool for
urban analysis. In this paper we aim to review and introduce the potential of this technology to
the urban planning community. In addition, we present the ‘Mobile Landscapes’ project: an applica-
tion in the metropolitan area of Milan, Italy, based on the geographical mapping of cell phone usage
at different times of the day. The results enable a graphic representation of the intensity of urban
activities and their evolution through space and time. Finally, a number of future applications are
discussed and their potential for urban studies and planning is assessed.
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Urban gravity: a model for inter-city telecommunication flows
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Figure 2. (a) Illustration of the macroscopic communication network [only the
top 30% of the links (those having the strongest intensity) are represented].
Colors indicate the intensity of communication between the cities: bright colors
indicate a strong intensity. (b) Intensity distribution of the macroscopic network,
self-edges are not considered. The red curve shows the lognormal best fit, with
parameters pu = 3.93 and o = 1.03.



This result suggests that the communication between cities is ruled by the following
gravity model, which is symmetric, scales linearly with the population sizes and decreases
with d?:

Pp Pg

dip
there, the scaling constant K is the gravity constant for a timespan of 6 months of calling
activity.

Lap =K
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Human mobility impacts many aspects of a city, from its spatial structure’ > toiits
response to an epidemic*”. Itis also ultimately key to social interactions®,
innovation®?and productivity™. However, our quantitative understanding of the
aggregate movements of individuals remainsincomplete. Existing models—such as
the gravity law'>" or the radiation model*—concentrate on the purely spatial
dependence of mobility flows and do not capture the varying frequencies of recurrent
visits to the same locations. Here we reveal a simple and robust scaling law that
captures the temporal and spatial spectrum of population movement on the basis of
large-scale mobility data from diverse cities around the globe. According to this law,
the number of visitors to any location decreases as the inverse square of the product
of their visiting frequency and travel distance. We further show that the
spatio-temporal flows to different locations give rise to prominent spatial clusters
with anareadistribution that follows Zipf’s law®. Finally, we build an individual
mobility model based on exploration and preferential return to provide amechanistic
explanation for the discovered scaling law and the emerging spatial structure. Our
findings corroborate long-standing conjecturesin human geography (such as central
place theory™ and Weber’s theory of emergent optimality'®) and allow for predictions
of recurrent flows, providing a basis for applications in urban planning, traffic
engineering and the mitigation of epidemic diseases.
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Vector-based pedestrian navigation in cities UNIVERSITY LIBRARY

Christian Bongiorno, Yulun Zhou, Marta Kryven, David Theurel, Alessandro Rizzo, Paolo Santi &, Joshua Download PDF

I«

Tenenbaum & Carlo Ratti

Nature Computational Science 1, 678-685 (2021) | Cite this article
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Special
Abstract One-Year Anniversary Collection

How do pedestrians choose their paths within city street networks? Researchers have tried to A new computational model for human

navigation

shed light on this matter through strictly controlled experiments, but an ultimate answer

based on real-world mobility data is still lacking. Here, we analyze salient features of human .
Laura Alessandretti

path planning through a statistical analysis of a massive dataset of GPS traces, which reveals Nature Computational Science News & Views
that (1) people increasingly deviate from the shortest path when the distance between origin 18 Oct 2021

and destinationincreases and (2) chosen paths are statistically different when origin and

destination are swapped. We posit that direction to goal is a main driver of path planning and Sections Figures References
develop avector-based navigation model; the resulting trajectories, which we have termed Abstract

pointiest paths, are a statistically better predictor of human paths than a model based on Main

minimizing distance with stochastic effects. Our findings generalize across two major US

cities with different street networks, hinting to the fact that vector-based navigation might be Results

a universal property of human path planning. Discussion

ps://www.nature.com/articles/s43588-021-00130-y.pdf"
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Figure 1: Differences between human paths and shortest paths. A. Aggregated comparisons between the path lengths
of human and shortest paths in Boston and San Francisco, as a function of the Euclidean distance between origin and destination
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Understanding house price appreciation using multi-source big geo-data and machine

learning

Yuhao Kang ®®, Fan Zhang » *, Wenzhe Peng ¢, Song Gao P, Jinmeng Rao ®, Fabio Duarte » ¢, Carlo Ratti 2

@ Senseable City Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
® Geospatial Data Science Lab, Department of Geography, University of Wisconsin, Madison, WI 53703, United States

¢ Department of Architecture, Massachusetts Institute of Technology, Cambridge, MA 02139, United States

4 Urban Management Program, PUCPR, Curitiba 80215-910, Brazil

ARTICLE INFO
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ABSTRACT

Understanding house price appreciation benefits place-based decision makings and real estate market analyses.
Although large amounts of interests have been paid in the house price modeling, limited work has focused on
evaluating the price appreciation rate. In this study, we propose a data-fusion framework to examine how well
house price appreciation potentials can be predicted by combining multiple data sources. We used data sets
including house structural attributes, house photos, locational amenities, street view images, transportation ac-
cessibility, visitor patterns, and socioeconomic attributes of neighborhoods to enrich our understanding of the
real estate appreciation and its predictive modeling. As a case study, we investigate more than 20,000 houses
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Urban visual intelligence: Uncovering hidden city profiles
with street view images

Zhuangyuan Fan®(2), Fan Zhang®'(2), Becky P. Y. Loo®“{%), and Carlo Ratti

Edited by Richard Shearmur, McGill University, Montreal, Quebec, Canada; received November 30, 2022; accepted May 18, 2023 by Editorial Board
Member Susan Hanson

A longstanding line of research in urban studies explores how cities can be understood
through their appearance. However, what remains unclear is to what extent urban Significance
dwellers’ everyday life can be explained by the visual clues of the urban environment.
In this paper, we address this question by applying a computer vision model to 27
million street view images across 80 counties in the United States. Then, we use the
spatial distribution of notable urban features identified through the street view images,

We demonstrate that urban
features extracted from street
view images through a computer

such as street furniture, sidewalks, building facades, and vegetation, to predict the vision model can effectively
socioeconomic profiles of their immediate neighborhood. Our results show that these estimate the hidden

urban features alone can account for up to 83% of the variance in people’s travel neighborhood socioeconomic
behavior, 62% in poverty status, 64% in crime, and 68% in health behaviors. The status, such as travel behaviors,
results outperform models based on points of interest (POI), population, and other poverty status, health outcomes
demographic data alone. Moreover, incorporating urban features captured from street and behaviors, and crime.

view images can improve the explanatory power of these other methods by 5% to 25%.
We propose “urban visual intelligence” as a process to uncover hidden city profiles,
infer, and synthesize urban information with computer vision and street view images.
This study serves as a foundation for future urban research interested in this process

and understanding the role of visual aspects of the city.

Specifically, models using street
view features alone can estimate
up to 83% of the variance in
vehicle miles traveled, 64% in
violent crime occurrences, and

urban studies | socioeconomic status | built environment | computer vision 68% in the population lacking

sustainable development goals physical activities. These results
outperform models using other

An in-depth study of the urban environment is vital for knowing cities and the commonly adopted data such as

lives within (1—4). The urban environment is a complex system that manifests itself
through many measurable patterns, including land use diversity, building density, street
network connectivity, presence of greenery, and food and retail business. Leveraging

points of interest, population, and
demographics. With the

increacine availabhilitv of <treet
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Longitudinal wastewater sampling in
buildings reveals temporal dynamics of
metabolites
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Abstract

Direct sampling of building wastewater has the potential to enable “precision public health”
observations and interventions. Temporal sampling offers additional dynamic information
that can be used to increase the informational content of individual metabolic “features”, but
few studies have focused on high-resolution sampling. Here, we sampled three spatially
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