
Gaia-X 101

Ewann Gavard – Tech lead – Gaia-X AISBL CTO Team



Summary

TECHNOLOGIES AND 
STANDARD USED IN 

GAIA-X

GAIA-X 
SPECIFICATIONS & 

DOCUMENTS

CURRENT STATE OF 
THE 

IMPLEMENTATION

WRAP EVERYTHING 
TO GET GAIA-X 
CREDENTIALS



Let's start outside of Gaia-X

Verifiable Credentials

JSON-LD

JsonWebSignature

DID/DID Web

SHACL



Verifiable Credentials

Represents any form of credential, permits, license

Used in Gaia-X to represent everything, companies, people, services

VCs are cryptographically signed by the issuer, allowing to check data tampering and issuer's legitimacy

VCs are written using JSON-LD, allowing to intricate and bind credentials and claims



JSON Linked Data

Contexts

Same as XML contexts, allow to target attributes without name collisions

Links

Each JSON-LD file is a graph, allowing to target other nodes

Representation

JSON-LD is just one representation of RDF



JWS: JsonWebSignature

Allow to ensure data consistency

References issuer's DID (publicly available), allowing to check issuer's

trustworthiness

Gaia-X uses "compact sign" to limit payloads size

Two marshalling co-existing in Tagus. Specification unclear & misinterpreted



Self-declared and self-hosted identity

Contains cryptographic material allowing to ensure trust

One specification used in Gaia-X at the moment : did:web

Examples:

did:web:compliance.lab.gaia-x.eu:v1 resolves to https://compliance.lab.gaia-

x.eu/v1/did.json

did:web:bakeup.io resolves to https://bakeup.io/.well-known/did.json

DID: Decentralized Identifiers

Issuer

VerificationMethod



Know as shapes in our ecosystem, and written in Turtle

Validates RDF structure of documents

Similar to XSD for XML

Not all constraints can be expressed in SHACL, hence some "business rules" 

implemented in code

SHACL



Gaia-X specifications

Identity & Credentials Access Management Document

Policy Rules & Labelling Document

Architecture Document

Data Exchange Document

For Tagus: Trust Framework (merged in PRLD & Architecture Document since)

All available on docs.gaia-x.eu



Gaia-X specifications in a slide

Everything is described using VerifiableCredentials in JSON-LD

Each issuer has to provide signed terms and conditions (TL;DR be nice)

Participant has to provide a Legal Registration Number issued by an accredited notary

On production, participant must use an EV-SSL or eIDAS certificate to sign their credentials

Few providers are accredited Gaia-X compliance issuers, more to come.

Having your credentials validated by the engine will result in a Gaia-X compliance VerifiableCredential



State of the implementation

1st production-ready release: Tagus (v1)

o Trust framework 22.10 fully implemented (Participants, ServiceOfferings, Resources)

o PRLD 22.11 partially implementated: Service Offering Labels level 1

A bit of tooling provided:

o Wizard

o DID Library

o Signature Library

o DID Validator Library

Running endpoints:

o https://docs.gaia-x.eu/framework/?tab=clearing-house

https://docs.gaia-x.eu/framework/?tab=clearing-house


State of the implementation

Some mistakes exist:

o JSON-LD namespace complicated and referring to development in the URL

o Shapes are not perfectly aligned with specs (LegalParticipant != LegalPerson)

o Types need to be in credentialSubject to be valid (!55)



Software architecture



Wizard demo



Time to code



And after ?

• Let the world know & consume other people info

• Join a dataspace if you want

• Build your own catalog or use an existing one

• Participate in the specifications to move forward



Thank you for your 
attention



IPFS for the Gaia-x registry
A first step in distributing provably unmodified compliance 

artefacts



Why IPFS

What is IPFS?

• IPFS (InterPlanetary File System) is a peer-to-peer protocol designed for storing and sharing data in a distributed file system.

• Based on the Kademlia Distributed Hash Table

• Unlike traditional web protocols that locate data based on servers (location-based addressing), IPFS locates data based on its content 
(content-based addressing). This is using sha-256 content ids (CIDs).

Advantages of IPFS:

• Decentralization: Eliminates reliance on centralized servers, reducing points of failure and increasing resilience against censorship and 
outages.

• Efficiency and Performance: Fetches files from the nearest node rather than a central server, potentially speeding up web content delivery.

• Permanence: Content addressing ensures that data cannot be tampered.

• Interoperability: Facilitates an open web where applications can communicate more freely, enhancing data sharing and collaboration across 
different platforms.

• Cost Reduction: Can reduce hosting and bandwidth costs by distributing the load across multiple nodes.



IPFS in the GXDCH context

Potential cons of using IPFS for storing registry artefacts in practice:

• In order to really eliminate the points of failure and increase resilience, we will need actors (GXDCH operators) to participate by pining and 
seeding our artefacts.

• IPFS can be slow if we have a low number of peers hosting and sharing our content.

• We’re introducing a new external dependancy in our registry service deployment, in the form of Kubo, although since both are communicating 
through the standard RPC API, any compliant IPFS implementation (for example, an externally subscribed managed IPFS service) would work.

• On small text based files like ours (trust framework shapes, revocation lists, trusted gxdch list, etc.) the cost of exposing an IPFS node IP/dns 
through Load Balancers will probably be greater than centralized hosting bandwidth costs.



What will and won't change
Impacted artefacts:

• Trust framework shapes and schemas;

• Issuers revocation list;

• Trusted GXDCHs list.

Current release (TAGUS v1):

Those files were previously either bundled statically on each registry instance, or served from our gitlab. They were then served through the endpoints 
provided by the registry services.

Current implementation (on our development branch):

Those files are retrieved (both on startup and at regular intervals at runtime) from IPFS by registry instance. They are then still served through the 
endpoints provided by the registry services.

Next, LOIRE release:

Current implementation and Gaia-x Trust Anchors lists (described in a standardized format, such as ETSI 119 612).



A «new »Gaia-x IPFS service

IPFS pinning service:

• Is a new service managing our compliance artefacts through IPFS pinning and seeding (https://gitlab.com/gaia-x/lab/compliance/gx-ipfs-
pinning);

• Is the new place where we’ll be updating & unit testing the trust framework shapes;

• Advertise the root CID of our artefacts to registry services instances by leveraging our octodns configuration (https://gitlab.com/gaia-x/lab/
octodns);

• Will not need to be hosted by GXDCHs



A deeper look



Looking forward
« Weakly » distributed, not decentralized:

• Although we’re leveraging technologies that are distributed like dns, and also decentralized like IPFS we’re still updating those in a dictatorial 
and permissioned fashion. Some of those artefacts could probably benefit from more decentralization (ie: trust anchors & revocation lists)

• IPFS as a protocol does not incentivize sharing by non involved parties. This means unless we use paid services we’ll only be as distributed as
the number of seeding GXDCHs. It’s still ok regarding the size and bandwidth profile of our content, but could be better. This should not be an
issue as those requirements would automatically scale with GXDCHs deployments.

• Other parts of our infrastructure are still fully centralized, notably the Credentials Event Service (https://gitlab.com/gaia-x/lab/credentials-
events-service). We're looking into ways to improve this.

Solutions?:

• DAO, Governance & voting mechanisms: There are a lot of options allowed by smart contracts that could allow us to update artefacts in a 
decentralized fashion. Those range from simple multisigs contracts to advanced and customisable voting systems leveraging non transferable 
voting tokens.

• Much like NFTs, a storage solution combining txdata inscribed on a blockchain through calling a smart contract, pointing to IPFS content, could 
also be imagined in the future to decentralize the CES. This would need to be cheap and fast but there are solutions (L2s, application specific 
chains, etc.).

Our community is encouraged to provide feedback, ideas or concerns on those points.



Get more info or contribute

• Slack : https://join.slack.com/t/gaia-

xworkspace/shared_invite/zt-2dr9bj9hx-

IM7nwpv3DABR02UVhgQnzw

• Mailing lists: https://list.gaia-x.eu/postorius/lists/oss-

community.list.gaia-x.eu/

• OSS Community call, every thursday, 9am CEST

• Gitlab releases, issues, merge requests:

https://gitlab.com/gaia-x/lab

Thank you



Policy Reasoning using ODRL 
Profile for Attribute based 

access/usage control using 
Verifiable Credential claims

Yassir SELLAMI, Software Engineer, Gaia-X



Enforceable Policies using Verifiable Credentials

Using Verifiable Credential Claims within a policy definition

Use cases

ODRL (Open Digital Rights Language)

Policy definition example

Reasoning Engine

Using Ontologies

ODRL Profile

What’s next ?



The Open Digital Rights Language (ODRL) is a policy expression language that 

provides a flexible and interoperable information model for representing 

statements about the usage of content and services.

But…

There is no easy way to verify and assess an access request in a trustworthy 

verifiable manner from that same policy, especially using a software 

component.

So why not leverage Verifiable Credentials inside an ODRL Policy !

Using Verifiable Credential Claims within a policy
definition



A catalog only accepting Gaia-x compliant participants

A provider communicating only with valid Legal Participant VC holders

A natural personal giving consent to a PDI

A provider giving access to only certain countries/regions

A company sharing data with only partner companies

A company giving access to employees (Right delegation)

Company legally appointed represetative (LEAR)

The government giving access to only certified profesionnals

A catalog displaying more features for certain user

Use cases



ODRL





Policy reasoning engine



Using Ontologies

PREFIX odrl: <http://www.w3.org/ns/odrl/2/>
PREFIX rdfs: <http://www.w3.org/2000/01/>
PREFIX owl: <http://www.w3.org/2002/07/owl#>

odrl:includedIn a owl:TransitiveProperty .
odrl:includedIn a rdfs:subClassOf .





Compatible with the base ODRL Information Model

Would rely on ODRL, VC and JSONPath base specification

Give clear definition and syntax for custom constraint values

Custom value formats for ovc:leftOperand and ovc:credentialSubjectType

ovc:leftOperand to contain a JSONPath for the intended attribute to evaluate

ovc:credentialSubjectType refer to the credential type

ODRL Profile



What’s next

Provide a Typescript library

Provide a Java library

Component within Clearing House

Integration with EDC



Useful links

The ODRL Profile

https://gitlab.com/gaia-x/gaia-x-community/open-source-community

https://gitlab.com/gaia-x/

Gaia-x Slack

OSS Community Call & newsletter

Our Jira Backlog

https://gitlab.com/gaia-x/lab/policy-reasoning/odrl-vc-profile
https://gitlab.com/gaia-x/gaia-x-community/open-source-community
https://gitlab.com/gaia-x/
http://./
https://gitlab.com/groups/gaia-x/gaia-x-community/-/wikis/Calendar
https://gaia-x.atlassian.net/jira/software/c/projects/LAB/issues

	Default Section
	Slide 1: Gaia-X 101
	Slide 2: Summary
	Slide 3: Let's start outside of Gaia-X
	Slide 4: Verifiable Credentials
	Slide 5: JSON Linked Data
	Slide 6: JWS: JsonWebSignature
	Slide 7: DID: Decentralized Identifiers
	Slide 8: SHACL
	Slide 9: Gaia-X specifications
	Slide 10: Gaia-X specifications in a slide
	Slide 11: State of the implementation
	Slide 12: State of the implementation
	Slide 13: Software architecture
	Slide 14: Wizard demo
	Slide 15: Time to code
	Slide 16: And after ?
	Slide 17: Thank you for your attention
	Slide 18: IPFS for the Gaia-x registry A first step in distributing provably unmodified compliance artefacts
	Slide 19: Why IPFS
	Slide 20: IPFS in the GXDCH context
	Slide 21: What will and won't change
	Slide 22: A « new » Gaia-x IPFS service
	Slide 23: A deeper look
	Slide 24: Looking forward
	Slide 25: Get more info or contribute

	Default Section
	Slide 26: Policy Reasoning using ODRL Profile for Attribute based access/usage control using Verifiable Credential claims
	Slide 27: Enforceable Policies using Verifiable Credentials
	Slide 28: Using Verifiable Credential Claims within a policy definition
	Slide 29: Use cases 
	Slide 30: ODRL
	Slide 31
	Slide 32: Policy reasoning engine 
	Slide 33: Using Ontologies
	Slide 34
	Slide 35: ODRL Profile
	Slide 36: What’s next
	Slide 37: Useful links


